
This is a very basic example of using scipy’s brute force optimizer to optimize the 

z domain poles and zeros to match an s domain prototype filter. Since the 

optimizer starts by doing an exhaustive search over a range of values for any 

number of variables, this becomes very slow rapidly as the number of variables or 

fineness of the search grid grows. 

This example is set up for a peaking equalizer where the gain , Q, and frequency of 

interest (fo) are specified. I suggest the reader familiarize themselves with the 

optimizer by reading the online description as well as The Audio EQ Cookbook. 

The function fun(x) is minimized by the optimizer via the array (x) of variables. 

Here x[0] is fo, x[1] is A (gain), and x[2] is Q. The poles and zeros are extracted as 

the roots of the characteristic polynomial and the peak to peak error between the z 

domain response and the s domain response is returned. 

The values in the body of the routine will need to be edited for different 

frequencies, other parameters, and different types of filters. Start and stop give a 

range of frequencies over which to optimize. The ranges are the set of ranges for 

the array of variables (x) passed by the optimizer (brute()). I use these to multiply 

the filter parameters so (.8, 1.2) is an ~ +- 20% range while the variable Ns is the 

fineness of the search. There is lots of room for experimentation with the values 

that are left up to the user. 

The optimizer returns the optimized values for the x array which are then used to 

compute the optimized poles and zeros and the coefficients for the IIR filter which 

are printed out at the end. 

This example is for a 5dB, 10kHz peaking filter with a Q of .5 and a sampling 

frequency of 48kHz. I chose to optimize only to 12kHz because increasing this 

rapidly degrades the fit due to the frequency warping. In fact it is easy to get no 

better a fit than by simply using the suggested “tweek” to the Q mentioned in the 

main article. 

Running the script generates the following output which consists of the poles and 

zeros of the prototype followed by the optimum z domain poles and zeros with the 

computed IIR filter coefficients. 

 


